
Maze Solving using Flood Fill Algorithm

Rayan Bouhal and Niko Paraskevopoulos

October 2023

Introduction to Micromouse

In the world of Robotics there is a competition called Micromouse. Micromouse
uses Robotics, Computer Science, and Combinatorics to create an autonomous
mouse that is no bigger than 16cm×16cm which can plan its own path to solve
a 2.88m × 2.88m maze. The mouse that finds the center of the maze in the
shortest time wins. [7].

Figure 1: Example Micromouse maze and mouse [7][2]

Core Concepts

Robotics

The true feat of Micromouse competitions lies in the remarkable design achieve-
ment of constructing hardware that adheres to stringent size requirements while
allowing the mouse to execute intricate maneuvers, including right, left, and
diagonal turns. This integration of hardware is particularly challenging as it
involves the meticulous miniaturization of complex components like sensors,
processors, and motor controllers, which must be small and light, yet robust

1



enough for rapid and precise maze navigation. These miniature marvels employ
infrared sensors which map the maze in a limited number of runs, and then de-
ploy their path finding algorithms to race to the center of the maze. Typically,
the fastest route is also the shortest path; however, depending on a mouse’s
hardware configuration, exceptions may arise. In one memorable competition,
the winning mouse traversed a path that deviated from its competitors. This
path, technically longer, featured fewer 90◦ turns, allowing the mouse to achieve
higher speeds despite its extended route.

While the hardware component of the competition is undeniably pivotal and
presents its own set of challenges, this research paper will exclusively focus on
the software and mathematical concepts of Micromouse. It is worth noting
that without the hardware component, the Micromouse challenge would not be
complete.

Computer Science

Another core concept at work in Micromouse is the software design of an intelli-
gent decision making algorithm. There are many algorithms that have been used
to solve a Micromouse maze, the most popular are Flood Fill, Dijkstra’s, A*,
and wall-following [4][3]. Flood Fill, Dijkstra’s, and A* are advanced pathfind-
ing algorithms, each with a unique approach to navigating mazes: Flood Fill
systematically fills the maze to determine the shortest path, Dijkstra’s algorithm
finds the shortest path between nodes, and A* efficiently combines features of
both for optimal pathfinding. On the other hand, wall-following is a simpler
method where the mouse follows the wall of the maze, often resulting in longer
paths. Currently, the best and most popular algorithm used in competitions
is Flood Fill, with Dijkstra’s and A* being slightly behind, and wall-following
being considered the poorest algorithmic choice. The development of these al-
gorithms has taken 30 years to perfect for this challenge [4].

In this research project we will present a visualization of the Flood Fill Al-
gorithm that solves a randomly generated Micromouse maze, to gain a deeper
understanding of the computing and mathematical concepts introduced by Mi-
cromouse. [1].

Combinatorics

All of the algorithms needed to solve Micromouse are derived from combinato-
rial concepts with the main concepts being graph theory, shortest paths, and
network algorithms. In the following section we will present an overview of the
Flood Fill Algorithm by defining the necessary combinatorial contexts.

Combinatorial Definitions

Network

A network can be described as a graph where each edge is assigned a non-
negative integer [6]. This value, denoted by k, where k ∈ Z and k ≥ 0, essentially

2



represents the weight, length, or cost associated with traversing an edge within
the network. An example of such a network is depicted in the figure below,
where the k values on each vertex indicate these characteristics.

Figure 2: Illustration of a Network

The significance of these k values lies in their utility in modeling various
real-world scenarios, where they can represent distances, costs, or other relevant
metrics [6].

Shortest Path

Shortest paths are a fundamental aspect of network optimization [6]. In these
problems, the goal is often to find the most efficient route between two points
within a network. Given a start and a destination, the challenge is to determine
the shortest path connecting these two vertices. Brute-force methods to solve
this problem can be extremely time-consuming, especially in large graphs. Thus,
shortest path algorithms are employed for a more efficient solution [6].

Among the various shortest path algorithms, our focus is on the Flood Fill
algorithm. In the context of Flood Fill, the integer value k on each edge of
the network represents the distance or proximity from the maze’s exit. This ap-
proach is particularly effective in scenarios like maze-solving, where the objective
is to navigate through a labyrinthine structure in the most efficient manner.

In essence, a maze can be viewed as an undirected and connected graph,
where the objective is to identify a shortest path from a given vertex a to
another vertex b. It’s important to note that there could be multiple shortest
paths, each influenced by various factors such as the layout of the maze and the
specific algorithm used for pathfinding.

Application of Flood Fill Algorithm

Building on the foundational concepts of networks and shortest paths, let’s delve
deeper into the specific application of the Flood Fill algorithm. In a Flood Fill
Network, the weights or k-values of the edges are determined based on their
distance to the target destination. Unlike traditional representations of graphs
with vertices and edges, the network in Flood Fill is more commonly visualized

3



as a grid or matrix. This representation aids in a clearer understanding and
more intuitive visualization of the maze-solving process.

The following figure showcases an example graph of a grid. Here, the green
circles represent the vertices, and the black lines between them signify the edges.
This arbitrary graph can be transformed into a network using the Flood Fill
algorithm, effectively illustrating how the algorithm navigates through a grid-
like structure.

Figure 3: Grid representation of a graph for Flood Fill Network

Note: For the remainder of this paper, our visualizations will utilize a grid
format rather than a traditional graph. This approach is chosen for its clarity,
simplicity in illustration, and adherence to established conventions.

Flood Fill Algorithm

We can visualise our maze as an m × m grid. Generally, for Micromouse
m = 16. However, for simplicity we will reduce our m to 5. With the end of the
maze being the center block, represented with a yellow star.

4



Proximity k-Values

0

1

1 0 1

1

4 3 2 3 4

3 2 1 2 3

2 1 0 1 2

3 2 1 2 3

4 3 2 3 4

The first step of the flood fill algorithm is to assign numeric proximity values
to all the squares in our grid. We previously defined this value as k.

1. Identify Start and Destination: Choose the start vertex and the des-
tination vertex. Assign a weight of 0 to the destination.

• In the drawing above our destination is denoted by the yellow star
and our start will be the bottom rightmost square.

2. Initialize Destination Edges: Assign a weight of 1 to all edges directly
connected to the destination vertex. These edges are highlighted in green.

• It is important to note that for our specific implementation, diagonal
paths are not considered

3. Propagate Weights: For each vertex reached by a weighted edge, assign
a weight of 2 to all its unweighted edges, which are now highlighted in a
yellow-green.

4. Iterate and Assign Weights: Continue the process of propagating the
weights from vertices that have just been assigned a weight, incrementing
the weight by 1 each time until all edges in the graph are weighted.

The initial mapping depicted above is how the mouse first views the maze.
On the first iteration the mouse will act as if the maze has no walls. Then as
the mouse runs through the maze and senses walls it recomputes the proximity
values.

5



4 3 2 3 4

3 2 1 2 3

2 1 0 3 4

3 2 3 4 5

4 3 4 5 6

Here is a simple illustration to show, that by adding just a few walls the Flood
Fill Algorithm completely recalculates the proximity values.

4 3 4 5 6

3 2 1 2 5

2 1 0 3 4

3 2 5 4 5

4 3 4 5 6

Here is a more complex maze that better imitates the Micromouse competition.

Shortest Path

Now that we have mapped the proximity k-values we are going to use those
values to help us find the shortest path. Let’s consider all three mazes we just
viewed.

Let the starting position of the mouse be the bottom right corner facing
the top of the maze. The Flood Fill Algorithm will find the shortest path by
following descending proximity values. If it reaches a square where the values
surrounding that square are equal, it will prioritize the straight path, since
avoiding turns is generally faster for a vehicle.

6



4 3 2 3 4

3 2 1 2 3

2 1 0 1 2

3 2 1 2 3

4 3 2 3 4

4 3 2 3 4

3 2 1 2 3

2 1 0 3 4

3 2 3 4 5

4 3 4 5 6

4 3 4 5 6

3 2 1 2 5

4 1 0 3 4

3 2 5 4 5

4 3 4 5 6

Research Approach

We aim to develop a graphical simulation of a mouse navigating a maze using
the Flood Fill Algorithm by integrating insights from various research papers.
Komák and Pivarčiová employed CAD, a 3D modeling software, to visually
represent the maze [1]. In contrast, we will utilize JavaScript—a language we
are more proficient in—for both graphics and the algorithm’s implementation.

Komák and Pivarčiová emphasized the need for the underlying code to detect
maze walls and facilitate the mouse’s movements—forward, left, and right [1].
In their model, users manually control the mouse’s movement. The simulation
concludes once the mouse either encounters an obstacle or reaches its destination
[1].

Our goal is to enhance this model. We aspire to design an autonomous Mi-
cromouse maze simulation that leverages the Flood Fill Algorithm to determine
the shortest path. Mirsha et al. and Tjiharjadi et al. have illustrated how to
integrate the Flood Fill Algorithm with physical components to navigate a real
Micromouse maze [3] [4] [5]. Adapting their work, we will focus solely on the
algorithm, setting aside the hardware considerations.

Enhancements to Our Research

The Flood Fill Algorithm currently stands as the most prominent method
for Micromouse competitions. Consequently, from an algorithmic standpoint,
there’s limited scope for refining our approach. However, a significant aspect
we’re choosing not to address in our research pertains to the diagonal move-
ments of the mouse in real-life Micromouse contests. Our simulation restricts
the mouse to move only forward, left, or right. A potential avenue for aug-
menting our research would be to modify both our simulation and algorithm
to incorporate this diagonal movement capability. Nevertheless, for reasons of
time constraints and simplicity, we have opted not to delve into this dimension
for now.

7



References

[1] Martin Komák and Elena Pivarčiová. “Creating a Simulation Environment
for the Micromouse”. English. In: TEM Journal 11.1 (Feb. 2022). Copyright
- © 2022. This work is published under https://creativecommons.org/licenses/by-
nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Con-
ditions, you may use this content in accordance with the terms of the
License; Last updated - 2022-09-06, pp. 479–483. url: http://login.
ezproxy . lib . vt . edu / login ? url = https : / / www . proquest . com /

scholarly-journals/creating-simulation-environment-micromouse/

docview/2702222085/se-2.

[2] Micromouse robot runs maze in record-breaking five seconds (w/ Video). Im-
age source. 20120. url: https://phys.org/news/2010-11-micromouse-
robot-maze-record-breaking-seconds.html.

[3] Swati Mishra and Pankaj Bande. “Advanced Algorithms for Micro Mouse
Maze Solving”. In: Proceedings of the 2009 International Conference on
Embedded Systems & Applications, ESA 2009, July 13-16, 2009, Las Vegas
Nevada, USA. Ed. by Hamid R. Arabnia and Ashu M. G. Solo. CSREA
Press, 2009, pp. 78–84.

[4] Swati Mishra and Pankaj Bande. “Maze Solving Algorithms for Micro
Mouse”. In: 2008 IEEE International Conference on Signal Image Tech-
nology and Internet Based Systems. 2008, pp. 86–93. doi: 10.1109/SITIS.
2008.104.

[5] Semuil Tjiharjadi, Marvin Wijaya, and Erwin Setiawan. “Optimization
Maze Robot Using A* and Flood Fill Algorithm”. In: International Journal
of Mechanical Engineering and Robotics Research 6 (Sept. 2017), pp. 366–
372. doi: 10.18178/ijmerr.6.5.366-372.

[6] A. Tucker. Applied Combinatorics, 6th Edition. Online access: Center for
Open Education Open Textbook Library. Wiley, 2012. isbn: 9781118210116.
url: https://books.google.com/books?id=hdgbAAAAQBAJ.

[7] Bob White. APEC MicroMouse Contest Rules. 2004. url: https://www.
thierry- lequeu.fr/data/APEC/APEC_MicroMouse_Contest_Rules.

html.

8


