References

Maze Solving Using the Flood Fill Algorithm

Rayan Bouhal and Niko Paraskevopoulos

November 2023

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Contents

® Micromouse Competition
@ Combinatorial Review

® Algorthimic Review

@ Research Methods

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

[6]

Micromouse

References

e Micromouse is a robotics competition in which teams design a

miniature autonomous vehicle that can intelligently solve a maze.
e The goal is to find the end of the maze in the shortest possible time.

|
L] e
i £ ||

Rayan Bouhal and Niko Paraskevopoulos

Maze Solving Using the Flood Fill Algorithm

References

Robotics

e A main component of Micromouse is scaling the hardware to a
minature size while still allowing the mouse to move at top speeds
and use infrared sensors to solve the maze on its own.

e This major feat requires it's own area of research which we will not
cover.

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Computer Science

e The second core part of the competition is coding an intelligent
algorithm which can solve the maze.

e There have been several iterations of this algorithm since the
competition started but currently the most widely used is the
dynamic programming algorithm, Flood Fill. [3]

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Combinatorics

The competition employs Combinatorial principles because the maze
solving algorithm is designed using concepts from graph theory such as
networks and shortest-paths. [5]

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Definitions

Network:
e A graph where each edge is assigned a non-negative integer.
e Let's denote this value by k, where k € Z and k > 0.

e The k values can clearly be seen in the graph depicted above, these
values generally determine the weight, length, or cost of traversing
an edge.

[5]

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Definitions cont.

Shortest Path:
e Shortest Paths are a common problem for Network optimization.

e Generally, you are given a start and a destination and you need to
find the shortest path between the two points.

e Depending on the size of your graph brute forcing this type of
problem could take an unreasonable amount of time and effort.

e To optimize our efforts we use shortest path algorithms, which there
are many of, but our focus today is the dynamic programming
algorithm, Flood Fill.

[5]

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Networks and Flood Fill

e The Flood Fill Netowrk weights or k-values are based on distance to
the target destination.
e The network is most often visualized as a grid or matrix rather than

a traditional graph with vertices and edges (as seen in the previous
slide).

This is a visualization of an arbitrary graph that we could make into a
network using the Flood Fill algorithm, where the green circles are
vertices, and the white lines are edges.

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Algorithm Steps

® Identify Start and Destination: Choose the start vertex and the
destination vertex. Assign a weight of 0 to the destination.

@ |Initialize Destination Edges: Assign a weight of 1 to all edges
directly connected to the destination vertex.

® Propagate Weights: For each vertex reached by a weighted edge,
assign a weight of 2 to all its unweighted edges, which are now
highlighted in purple.

© lIterate and Assign Weights: Continue the process of propagating
the weights from vertices that have just been assigned a weight,
incrementing the weight by 1 each time until all edges in the graph
are weighted.

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Step 1

e For simplicity and clarity we will depict our Network as a grid rather
than a graph, with a final destination (marked by the star) and a
start (marked by the top facing mouse)

k

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Step 2

e The destination is always assigned a weight or k-value of 0, because
you cannot get any closer to the end goal.

i

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Step 3

e All squares that are next to the destination increase by 1

e For this specific implementation we will not move diagonally or
consider diagonal squares.

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Step 4 ...

e Continue increasing k by 1 until all squares have been assigned a
value

e Note: this grid is "blank” and has no obstacles or walls. Which in
graph form would be represented by disconnected edges.

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Recalculate k-Values

e Let's add a few walls and see how the k-values change

e This doesn't quite look like a maze yet, we should add more
obstacles

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

Add More Walls

References

e This looks more like a maze and our Network is complete

e As you can see the k-values have changed significantly now that
there are more obstacles

Rayan Bouhal and Niko Paraskevopoulos

m]

b =
Maze Solving Using the Flood Fill Algorithm

References

Finding the Shortest Path

Now that our network is finished, we can continue to use the Flood Fill
algorithm to find the shortest path:

©® Move to Lesser Value: From the starting position, move to the
square that has a lesser value than the current position.

® Resolve Ties with Straight Path: If there is a tie, meaning two or
more squares have the same value, prioritize the path that continues
in the same direction as the previous step.

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Shortest Path [No Walls]

Rayan Bouhal and Niko Paraskevopoulos

Based on our previous work we have
this network of weighted paths. To
find the shortest path:

©® Move from the starting position
to an adjacent square with a
lower weight.

@ In the case of equal weights,
choose the direction that is the
straightest.

Follow these steps until you reach
the destination, which is marked by
the lowest weight on the network.

Maze Solving Using the Flood Fill Algorithm

References

Shortest Path [Some Walls]

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

Shortest Path [More Walls]

Rayan Bouhal and Niko Paraskevopoulos

b =
Maze Solving Using the Flood Fill Algorithm

References

Research

For our research we created a Micromouse Simulator. It is a small
program that finds the shortest path in a randomly generated maze using
the the flood fill algorithm.

e We modeled our approach after the work of four other papers. The
first three describe coding the flood fill algorithm and the last
describes creating a maze simulation. [2] [3] [4] [1] .

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Generating a Maze

e The approach we took to generating a random maze was using a
recursive Depth First Search (DFS) algorithm.

e This is the common approach used when programming mazes.

e The basic idea is that that we explore the deepest node on the
graph, so the furthest one away, and then backtrack until we hit a
node that we have already explored but have not branched to. Then

we follow that branch and come back, and continue this until all
nodes have been explored.

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

DFS Visualizer

This YouTube video shows a visualization of what the maze generation
looks likes.

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

https://www.youtube.com/watch?v=YBI2SDnleEw&t

References

Demo

Try it Yourself (link)

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

https://rayanbouhal.com/micromouse/sim

References

Code Overview

o Written with JavaScript (backend) , CSS and HTML (GUI)

e Maze is randomly generated using a recursive Depth First Search
(DES) Algorithm
e Shortest Path is solved using Flood Fill Algorithm
e The source code for the program can be found at

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

https://github.com/rbouhal/micromouse/blob/main/maze.js
https://github.com/rbouhal/micromouse/blob/main/maze.js

References

Flood Fill

Flood Fill uses a recursive stack approach. We push neighboring cells
onto the stack as we explore and pop them off when we're done. The
stack ultimately holds our shortest path.

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Flood Fill for Shortest Path Finding:

. is a recursive function that searches for the shortest
path from a starting point to a destination within a maze. It
performs this by advancing to adjacent cells with lower weights and
backtracking when no further progression is possible.

e |t uses a flag within each cell to keep track of the cells
that have already been explored, preventing the algorithm from
revisiting the same cell and thus efficiently finding the shortest path.

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Code Snippet

124 v

125
126
127
128
129
130
131
132
83
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

function floodFill(x, y, finishX, finishY, path = []) {
if (x < @ || x >= mazeColumns || y < @ || y >= mazeRows || mazel[y][x].visited) {

return false;

3

maze[yl [x].visited = true;
path.push({ x, y });

if (x === finishX && y === finishY) {

console. log("Finish reached at:", x,
return path;

console.log("Visiting:", x, y);

~

/ Try each direction

e e

f (!mazelyl [x].bottom && floodFill(x, y
f (!mazely] [x].left && floodFill(x - 1,

[

// Backtrack: Remove the last element if
path.pop();
return false;

Rayan Bouhal and Niko Paraskevopoulos

2H

f (!mazely] [x].top & floodFill(x, y - 1, finishX, finishY, path)) return path;
f (!mazely] [x].right && floodFill(x + 1, y, finishX, finishY, path)) return path;

+ 1, finishX, finishY, path)) return path;
y, finishX, finishY, path)) return path;

all directions are blocked

A
Maze Solving Using the Flood Fill Algorithm

References

DFS for Maze Carving:

. is a function that uses Depth-First Search
(DFS) to carve out a random maze by knocking down walls between
adjacent cells. It ensures randomness by shuffling the order of
directions before each recursive call.

e Walls are removed by updating both the maze data structure and
the GUI, showing a real-time carving process on the display.

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Code Snippet

// The recursive DFS function
v function carvePath(x, y) {
/7 Mark the current cell as visited
mazely] [x].visited = true;

let directions = [0, 1, 2, 31;
shuffle(directions); // Shuffle directions to ensure randomness

11 Explore neighbors

for (let i = 0; i < directions. length; i++) {
let nextX = x + dx[directions[i]]
let nextY = y + dyldirections[il];]

7/ Check if the neighbor is within bounds and not visited
if (isInBounds(nextX, nextY) & Imaze[nextv] [nextX].visited) {
// Carve a path between the current cell and the neighbor

if (directions[i] == 1) { // Right
docunent. getElenentById(* cell-${y}-${x}")..style.borderRight = “none";
d t “cel *).style.borderLeft = "none";

nazelyl (x]. right = fals
maze [nextY] [nextX] . left = false;

¥ else if (directions(i] === 3) { // Left
document . getElementById(" cell-${y}-${x}").style.borderLeft = "none'
docuent. cell-§({nextX}). style.borderRight

mazely] [x]. left = false;
maze [nextY] [nextX] . right = false;

¥ else if (directions[i] === 0) { // Up
docunent. getElementById(" cell-${y}-${x}") .style.borderTop
docunent Scel {nextx}*). style.bordergotton

"none”;

mazely] [x]..top = false;
maze [nextY] [nextX] .botton = false;

¥ else if (directions[i] === 2) { // bown
docunent. getE LementByd(" cell-${y}-${x}").style.borderBotton = "none";
docunent. getELementById(" cell-${nextY}-${nextX}").style.borderTop = "none";
mazely] [x]..botton = false;
maze [nextY] [nextX] . top = false;

carvePath(nextX, nextY); // Recursive call

carvePath(0, o)

i // Start carving fron the top-left corner

=} F = DA

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

GUI Code:

e The GUI represents the maze in a visual format using HTML and
CSS. The maze is generated dynamically by creating a table with
cells corresponding to the maze's grid structure.

e The function visualizes the pathfinding process by
moving an icon through the cells that constitute the shortest path
found by the flood fill algorithm, offering an animated solution to
the maze.

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Future Work

e Our project could be improved by adapting our algorithm to
incorporate diagonal movement.

e The traditional Micromouse competition will have mice that are
programmed to move on diagonals, but we omitted this feature for
the sake of simplicity and time constraints.

Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

References

Thank Youl!

Are there any questions?

Rayan Bouhal and Niko Paraskevopoulos

m]

& =
Maze Solving Using the Flood Fill Algorithm

References

[1]

]

Martin Komak and Elena Pivartiova. “Creating a Simulation
Environment for the Micromouse”. English. In: TEM Journal 11.1
(Feb. 2022). Copyright - (©) 2022. This work is published under
https://creativecommons.org/licenses/by-nc-nd/4.0/ (the
“License”). Notwithstanding the ProQuest Terms and Conditions,
you may use this content in accordance with the terms of the
License; Last updated - 2022-09-06, pp. 479-483. URL:
http://login.ezproxy.lib.vt.edu/login?url=https:
//www.proquest.com/scholarly-journals/creating-
simulation-environment-
micromouse/docview/2702222085/se-2.

Swati Mishra and Pankaj Bande. “Advanced Algorithms for Micro
Mouse Maze Solving”. In: Proceedings of the 2009 International
Conference on Embedded Systems & Applications, ESA 2009, July
13-16, 2009, Las Vegas Nevada, USA. Ed. by Hamid R. Arabnia and
Ashu M. G. Solo. CSREA Press, 2009, pp. 78-84.

[} [=
Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

it
)
ye)
0)

http://login.ezproxy.lib.vt.edu/login?url=https://www.proquest.com/scholarly-journals/creating-simulation-environment-micromouse/docview/2702222085/se-2
http://login.ezproxy.lib.vt.edu/login?url=https://www.proquest.com/scholarly-journals/creating-simulation-environment-micromouse/docview/2702222085/se-2
http://login.ezproxy.lib.vt.edu/login?url=https://www.proquest.com/scholarly-journals/creating-simulation-environment-micromouse/docview/2702222085/se-2
http://login.ezproxy.lib.vt.edu/login?url=https://www.proquest.com/scholarly-journals/creating-simulation-environment-micromouse/docview/2702222085/se-2

References

3]

[4]

[5]

[6]

Swati Mishra and Pankaj Bande. “Maze Solving Algorithms for
Micro Mouse”. In: 2008 IEEE International Conference on Signal
Image Technology and Internet Based Systems. 2008, pp. 86—93.
DOI: 10.1109/SITIS.2008.104.

Semuil Tjiharjadi, Marvin Wijaya, and Erwin Setiawan.
“Optimization Maze Robot Using A* and Flood Fill Algorithm”. In:
International Journal of Mechanical Engineering and Robotics
Research 6 (Sept. 2017), pp. 366-372. DOTI:
10.18178/ijmerr.6.5.366-372.

A. Tucker. Applied Combinatorics, 6th Edition. Online access:
Center for Open Education Open Textbook Library. Wiley, 2012.
ISBN: 9781118210116. URL:
https://books.google.com/books?id=hdgbAAAAQBAJ.

Bob White. APEC MicroMouse Contest Rules. 2004. URL:
https://www.thierry-lequeu.fr/data/APEC/APEC_
MicroMouse_Contest_Rules.html.

[} [= =
Rayan Bouhal and Niko Paraskevopoulos Maze Solving Using the Flood Fill Algorithm

it
)
ye)
i)

https://doi.org/10.1109/SITIS.2008.104
https://doi.org/10.18178/ijmerr.6.5.366-372
https://books.google.com/books?id=hdgbAAAAQBAJ
https://www.thierry-lequeu.fr/data/APEC/APEC_MicroMouse_Contest_Rules.html
https://www.thierry-lequeu.fr/data/APEC/APEC_MicroMouse_Contest_Rules.html

	References

